Abstract

The selective covalent modification of singly protonated peptides in the gas-phase via ion/ion charge inversion reactions is demonstrated. Doubly deprotonated 4-formyl-1,3-benzene disulfonic acid serves as a reagent anion for forming a Schiff base via the reaction of a primary amine on the peptide and the aldehyde functionality of the reagent anion. The process is initiated by the formation of an ion/ion complex comprised of the two reactants. Ion trap collisional activation of the complex results in loss of water from the intermediate that gives rise to Schiff base formation. N-terminally acetylated peptides with no lysine residues do not undergo covalent bond formation upon reaction with the reagent anion. Rather, the adduct species simply loses the reagent either as a neutral species or as a deprotonated species. The ability to modify singly protonated peptide ions covalently and selectively opens up new possibilities for the analysis of peptides and, possibly, other analyte species with primary amine functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.