Abstract

The use of household bleach cleaning products results in emissions of highly oxidative gaseous species, such as hypochlorous acid (HOCl) and chlorine (Cl2). These species readily react with volatile organic compounds (VOCs), such as limonene, one of the most abundant compounds found in indoor enviroments. In this study, reactions of HOCl/Cl2 with limonene in the gas phase and on indoor relevant surfaces were investigated. Using an environmental Teflon chamber, we show that silica (SiO2), a proxy for window glass, and rutile (TiO2), a component of paint and self-cleaning surfaces, act as a reservoir for adsorption of gas-phase products formed between HOCl/Cl2 and limonene. Furthermore, high-resolution mass spectrometry (HRMS) shows that the gas-phase reaction products of HOCl/Cl2 and limonene readily adsorb on both SiO2 and TiO2. Surface-mediated reactions can also occur, leading to the formation of new chlorine- and oxygen-containing products. Transmission Fourier-transform infrared (FTIR) spectroscopy of adsorption and desorption of bleach and terpene oxidation products indicates that these chlorine- and oxygen-containing products strongly adsorb on both SiO2 and TiO2 surfaces for days, providing potential sources of human exposure and sinks for additional heterogeneous reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call