Abstract

The gas-phase acidities DeltaG degrees (acid) of some 20 amides/enols of amides RNHCOCHYY'/RNHC(OH)=CYY' [R = Ph, i-Pr; Y, Y' = CO(2)R', CO(2)R' ', or CN, CO(2)R', R', R' ' = Me, CH(2)CF(3), CH(CF(3))(2)], the N-Ph and N-Pr-i amides of Meldrum's acid, 1,3-cyclopentanedione, dimedone, and 1,3-indanedione, and some N-p-BrC(6)H(4) derivatives and of nine CH(2)YY' (Y, Y' = CN, CO(2)R', CO(2)R' '), including the cyclic carbon acids listed above, were determined by ICR. The acidities were calculated at the B3LYP/6-31+G//B3LYP/6-31+G level for both the enol and the amide species or for the carbon acid and the enol on the CO in the CH(2)YY' series. For 12 of the compounds, calculations were also conducted with the larger base sets 6-311+G and G-311+G. The DeltaG degrees (acid) values changed from 341.3 kcal/mol for CH(2)(CO(2)Me)(2) to 301.0 kcal/mol for PhNHC(OH)=C(CN)CH(CF(3))(2). The acidities increased for combinations of Y and Y' based on the order CO(2)Me < CO(2)CH(2)CF(3) < CN, CO(2)CH(CF(3))(2) for a single group and reflect the increased electron-withdrawal ability of Y,Y' coupled with the ability to achieve planarity of the crowded anion. The acidities of corresponding YY'-substituted systems follow the order N-Ph enols > N-Pr-i enols >> CH(2)YY'. Better linear relationships between DeltaG degrees (acid) values calculated for the enols and the observed values than those for the values calculated for the amides suggest that the ionization site is the enolic O-H of most of the noncyclic trisubstituted methanes. The experimental DeltaG degrees (acid) value for Meldrum's acid matches the recently reported calculated value. The calculated structures and natural charges of all species are given, and the changes occurring in them on ionization are discussed. Correlations between the DeltaG degrees (acid) values and the pK(enol) values, which are linear for the trisubstituted methanes, excluding YY' = (CN)(2) and nonlinear for the CH(2)YY' systems, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.