Abstract

When the glass-transition temperature of the polymer is not so much higher than the experimental temperature, the pressure dependence of the mean permeability coefficient of the poly-mer membrane to a gas is apt to deviate from the prediction by the conventional dual-mode mobility model, and to obey a similar model with concentration-dependent diffusivities because of the plasticization action of sorbed gas in the polymer membrane. In this work, sorption and permeation for oxygen and carbon dioxide in a membrane of polystyrene whose glass-transition temperature is 95°C, were measured to discuss the mechanism of gas diffusion in glassy polymer membranes with relatively low glass-transition temperature at 30, 40 and 50°C respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.