Abstract
AbstractIn this study, the effects of silica nanoparticles on the permeability of pure CO2, O2, and N2 gases in cellulose acetate (CA) membrane have been studied. Silica particles were prepared via the sol–gel method through the hydrolysis of tetraethyl orthosilicate (TEOS). CA and CA/silica nanocomposite membranes were prepared by thermal phase inversion method. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transfer infrared (FTIR) analyses were employed to characterize the CA and CA/silica nanocomposite membranes. Gas permeation experiments showed an increase in the permeability of CO2 from 6.32 to 7.3 barrer and a reduction in the permeability of N2 from 0.18 to 0.09 barrer with the increment in silica content of the prepared composite membranes up to 20 wt%. Therefore, CO2/N2 selectivity of the nanocomposite membranes increased by increasing the silica content in the polymer matrix from 30 to 80 for 20 wt% load of silica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.