Abstract
Organosilica membranes were fabricated using bridged organoalkoxysilanes (bis(triethoxysilyl)methane (BTESM), bis(triethoxysilyl)ethane (BTESE), bis(triethoxysilyl)propane (BTESP), bis(trimethoxysilyl)hexane (BTMSH), bis(triethoxysilyl)benzene (BTESB), and bis(triethoxysilyl)octane (BTESO)) to produce highly permeable molecular sieving membranes. The effect of the organoalkoxysilanes on network pore size and microporous structure was evaluated by examining the molecular size and temperature dependence of gas permeance across a wide range of temperatures. Organosilica membranes showed H2/N2 and H2/CH4 permeance ratios that ranged from 10 to 150, corresponding to network pore size, and both H2 selectivity decreased with an increase in the carbon number between 2 Si atoms. Organosilica membranes showed activated diffusion for He and H2, and a slope of temperature dependence that increased approximate to the increase in the carbon number between 2 Si atoms. The relationship between activation energy and He/H2 permeance ratio for SiO2 and organosilica membranes suggested that the molecular sieving can dominate He and H2 permeation properties via the rigid microporous structure, which was constructed by BTESM and BTESE. With increased in the carbon concentration in silica, polymer chain vibration in organic bridges, which is a kind of solution/diffusion mechanism, can dominate the permeation properties. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4491–4498, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.