Abstract

Incorporation of multiwalled carbon nanotubes (MWNT) on the gas permeation properties of H2, CO2, O2, and N2 gases in poly(ether-block-amide) (Pebax-1657) membrane has been investigated. Pebax-1657 was dissolved in the ethanol−water mixture and cast on an ultraporous polyethersulfone substrate followed by complete solvent evaporation. Nanocomposite membranes were prepared by dispersion of MWNT in concentrations of 0−5% of polymer weight in the Pebax solutions with sonication for 2 h to ensure uniformity. Cross-linking was carried out in hexane medium using 2,4-toluylene diisocyanate (TDI). The permeabilities of pure gases were measured at room temperature, and the ideal selectivities were determined at pressures varying from 1−3 MPa using an indigenously built high-pressure gas separation manifold. For neat Pebax membrane, high permeabilities of 55.8 and 32.1 barrers were observed for CO2 and H2 gases, respectively, whereas that of N2 was as low as 1.4 barrers. The selectivity of cross-linked 2% MWNT Peba...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call