Abstract
The gas transport properties of graphene oxides (GO) incorporated into highly elastic poly(dimethylsiloxane) (PDMS)/GO elastomers synthesized from graphite and telechelic, amine-terminated PDMS were investigated. To develop broad fundamental understanding of the connection between composite architecture and gas transport properties, both gas barrier and separation characteristics were evaluated. The permeability for several common gases was studied as a function of GO concentration. Incorporating only 3.55vol% (8wt%) GO into the PDMS matrix resulted in a more than 99.9% reduction in gas permeation for various gases, such as H2, O2, N2, CH4 and CO2. Moreover, factor of two enhancements in gas selectivities were observed for CO2/N2 and CO2/CH4 compared to neat PDMS membranes. As a supplement to experimental data from scanning-electron and atomic-force microscopy and x-ray diffraction, theoretical models such as the Nielsen and Cussler models were applied to comprehend the dispersion and alignment of GO in the polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.