Abstract

Permeability to water vapor and oxygen, elastic modulus, tensile strength, and impact strength of polystyrene–polypropylene and high-impact polystyrene–polypropylene blends were determined as functions of blend composition and morphology. Three types of styrene–butadiene block copolymers were tested as compatibilizers and found to improve mechanical properties of blends. The experimental data on permeability and modulus were compared with the predictions for the studied binary and ternary blends. The predictive scheme employs a two-parameter equivalent box model and the data on phase continuity of constituents calculated using general equations derived from percolation theory. Blends with decreased permeability and plausible mechanical properties were proposed with regard to intended applications in food packaging. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2615–2623, 1998

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.