Abstract
The quantification accuracy of the gas mixture recognizing is greatly dependent on the gas sensor array signal processing method. The paper reports the new hybrid architecture with two main stages for gas mixture recognition. The first stage combine the principal component analysis (PCA) and back propagation neural network (BPNN) to qualitative identify the gas mixture, and the second stage composed of the independent component analysis (ICA) and BP sub networks to quantify the gas concentrations. The hybrid architecture and three other commonly used methods of PCA+BPNN, ICA+BPNN, and ICA+BP sub networks were respectively applied in binary gas mixture quantification based on the same gas sensor array, and results show that the hybrid architecture has the lowest quantitative recognition errors and fast converge speed comparing with the other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Mechanics and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.