Abstract

The modification of the free-electron laser (FEL) on the Stanford superconducting accelerator to operate as a gas-loaded FEL (GFEL) is described. The addition of a gas to the wiggler chamber of a FEL changes the phase velocity of the electromagnetic wave, and so provides a simple method for wavelength tuning without changing beam energy or wiggler parameters. A wavelength shift of over 950 AA has been achieved from a vacuum wavelength of 1.6 mu m by using 15 torr of hydrogen gas, in agreement with the GFEL synchronism condition incorporating the index of refraction of the gas. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.