Abstract

The multi-scale weighted complexity entropy causality plane (MS-WCECP) is proposed for characterizing the physical structure of complex system. Firstly we use the method to investigate typical nonlinear time series. Compared with the multi-scale complexity entropy causality plane (MS-CECP), the MS-WCECP can not only uncover the dynamic information loss of complex system with the increase of scale, but also can characterize the complexity of nonlinear dynamic system. In particular, the algorithm of MS-WCECP performs strong anti-noise ability. Then we calculate the MS-WCECP for the conductance fluctuating signals measured from vertical upward gas–liquid two-phase flow experiments in a small diameter pipe, the results demonstrate that the MS-WCECP is a useful approach for exploring the stability and complexity in gas–liquid two-phase flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.