Abstract

A pair of optical void sensors and a high-speed video camera were used to investigate the evolution of adiabatic gas–liquid two-phase flow in a long microchannel. Experiments were conducted with a 1676-mm-long, circular microchannel with an inner diameter of 100 μm. Two-phase flow patterns, void fraction, and velocities of gas plug/slug and liquid slugs were measured at different axial locations between the gas–liquid mixer and microchannel exit. The pressure decreased linearly in the first half of the microchannel, and more rapidly and nonlinearly in the second half of the test section. As a result, the flow accelerated significantly in the second half of the microchannel such that the void fraction and liquid slug velocity increased nonlinearly. The measured mean void fraction and mean velocity of liquid slugs also agreed well with the homogeneous flow model predictions when the liquid flow rate was constant and the mass velocity of the gas was low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.