Abstract
Based on computational fluid dynamics (CFD), gas−liquid mass transfer in upward Taylor flow through vertical circular capillaries was studied. To save computational resources and time, the numerical simulations were carried out in a moving frame of reference attached to Taylor bubbles. Three consecutive Taylor bubbles were used to mimic the behavior of Taylor flow in an infinitely long capillary. Steady-state solutions of concentration fields were obtained to describe gas transfer from Taylor bubbles to the liquid phase. The liquid-phase volumetric mass-transfer coefficient, KLa, was investigated as a function of various parameters, including the liquid-film length, liquid-slug length, liquid-film thickness, bubble rise velocity, liquid-phase diffusivity, capillary diameter, and gravity. One fitted equation, expressed with three dimensionless numbers, was developed to quantify the relationship between KLa and the above parameters. The examples show that the equation could predict KLa well. The contributions of the cylindrical bodies and hemispherical caps of Taylor bubbles on the overall mass transfer were studied separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.