Abstract

In order to utilize waste heat such as exhaust steam and hot air passing through air preheater in the waste incineration plant to heat air used for evaporating leachate concentrate (LC) by gas-liquid contact evaporation technology, hot air of 600 °C, 450 °C and 250 °C was used to evaporate LC in a laboratory-scale evaporator to obtain purified condensate used for supplying water for circulating cooling water system. The influence of pH, hot air temperature and evaporation rate on COD and NH3–N in condensate were investigated to identify the optimum operation of this technology. The results showed that COD concentration in condensate obviously decreased with increase in hot air temperature. Higher hot air temperature led to higher initial evaporation temperature, and evaporation rate of water was significantly greater than that of small molecular organic matter with lower boiling point than water with increasing hot air temperature. Reduction in contents of phenol, ketone and benzene was responsible for COD decreasing in condensate. COD in condensate decreased with increase in pH, as the amount of volatile organic matter such as fatty acids escaped from LC to condensate decreased. The pH had little influence on the DOM in condensate according to EEM spectra analysis. Evaporation rate had little influence on COD in the condensate water. NH3–N concentrations in condensate in all experimental groups were far away from the limit value (10 mg/L) in the water quality standard. Under the premise of meeting water quality standard, the lowest temperature (450 °C) of hot air was selected to save energy and use lower grade waste heat. Therefore, the optimum condition was 450 °C of hot air, pH = 7 of LC and CF = 10. At this condition, molecular weight of DOM in the condensate was smaller and humification degree and aromaticity of DOM were lower according to UV–visible absorption spectrum analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.