Abstract

The Boltzmann simplified velocity distribution function equation, as adapted to various flow regimes, is described on the basis of the Boltzmann–Shakhov model from the kinetic theory of gases in this study. The discrete velocity ordinate method of gas-kinetic theory is studied and applied to simulate complex multi-scale flows. On the basis of using the uncoupling technique on molecular movements and collisions in the DSMC method, the gas-kinetic finite difference scheme is constructed by extending and applying the unsteady time-splitting method from computational fluid dynamics, which directly solves the discrete velocity distribution functions. The Gauss-type discrete velocity numerical quadrature technique for flows with different Mach numbers is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established for studying the three-dimensional complex flows with high Mach numbers from rarefied transition to continuum regimes. On the basis of the parallel characteristics of the respective independent discrete velocity points in the discretized velocity space, a parallel strategy suitable for the gas-kinetic numerical method is investigated and, then, the HPF (High Performance Fortran) parallel programming software is developed for simulating gas dynamical problems covering the full spectrum of flow regimes. To illustrate the feasibility of the present gas-kinetic numerical method and simulate gas transport phenomena covering various flow regimes, the gas flows around three-dimensional spheres and spacecraft-like shapes with different Knudsen numbers and Mach numbers are investigated to validate the accuracy of the numerical methods through HPF parallel computing. The computational results determine the flow fields in high resolution and agree well with the theoretical and experimental data. This computing, in practice, has confirmed that the present gas-kinetic algorithm probably provides a promising approach for resolving hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view for solving the mesoscopic Boltzmann model equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.