Abstract

The gas-kinetic theory based flux splitting method has been successfully proposed for solving oneand two-dimensional ideal magnetohydrodynamics by Xu et al. [J. Comput. Phys., 1999; 2000], respectively. This paper extends the kinetic method to solve three-dimensional ideal magnetohydrodynamics equations, where an adaptive parameter η is used to control the numerical dissipation in the flux splitting method. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy and resolve strong discontinuous waves in three dimensional ideal MHD problems. AMS subject classifications: 76M25, 76W05

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.