Abstract

SummaryThe nonequilibrium dissolution and evolution characteristics of gas in oil-based drilling fluids (OBDFs) greatly affect the ratio of free gas to dissolved gas in the wellbore, thus influencing the prediction accuracy of the wellbore-pressure and surface responses. Previous equilibrium-state models can result in the incorrect estimation of the multiphase-flow parameters during a gas kick in OBDFs. Therefore, a nonequilibrium gas/liquid two-phase-flow model is developed for simulations of gas kicks in OBDFs. Nonequilibrium gas-kick behaviors in OBDFs are investigated using the proposed model, and it is concluded that there is a unique gas-dissolving stage in comparison to the equilibrium gas-kick conditions. In this stage, the pit gain decreases to a large extent, and this phenomenon can be misinterpreted by the drilling crew as a loss of circulation or a decrease in the gas-kick intensity. The drilling-fluid-outflow rate is not a reliable gas-kick indicator because of the lower increment in the drilling-fluid-outflow rate under both nonequilibrium and equilibrium gas-dissolution conditions. Neglecting the gas-evolution rate in OBDFs could lead to overestimations of the maximum pit gain and the drilling-fluid-outflow rate. More gas moves from the wellbore in the form of dissolved gas under noninstantaneous gas-evolution conditions. The results of this study provide a theoretical basis for the safe and efficient treatment of gas kicks in OBDFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call