Abstract

An extensive TEM study of the microstructure of Be TIP-30 irradiated with 3 and 10 keV D ions up to fluences, Φ, in the range from 3 × 10 20 to 8 × 10 21 D/m 2 at temperatures, T irr = 300, 500 and 700 K has been carried out. Depth distributions of deuterium in a form of separate D atoms and D 2 molecules have been investigated by means of SIMS (secondary ion mass spectrometry) and RGA (residual gas analysis) methods, correspondingly. D ion implantation is accompanied by blistering and gives rise to processes of gas-induced cavitation which are very sensitive to the irradiation temperature. At T irr = 300 K tiny gas bubbles (about 1 nm in size) pressurized with molecular deuterium are developed with parameters resembling those of helium bubbles in Be. Irradiation at T irr ≥ 500 K leads to the appearance of coarse deuterium-filled cavities which can form in sub-surface layers different kinds of oblate labyrinth structures. Questions of reemission, thermal desorption and trapping of deuterium in Be have been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call