Abstract

The Terrebonne Basin is a salt-withdrawal mini-basin within the northeast portion of the Walker Ridge protraction area in northern Gulf of Mexico continental slope that contains a thick sequence of upper Pliocene and Pleistocene clastic sediment. Data acquired during the 2009 Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) logging-while-drilling (LWD) program confirmed the presence of gas hydrate within a variety of sand and clay units. Integration of the Leg II LWD data with regional seismic mapping allows for the identification of various facies assemblages within the sand units and an initial estimation of the gas hydrate in-place resources throughout the Terrebonne basin. A total of ∼4.4×109m3 (1.55×1011ft3) of gas occurs within highly saturated gas hydrate accumulations within channel, proximal levee, and distal levee facies of four primary Lower Pleistocene sand reservoirs. These sand accumulations occur at the base of gas hydrate stability and locally trap additional, unquantified accumulations of free gas. A number of additional thin hydrate-bearing sand units are also observed to occur at shallower depths. Potential recoverable volumes from this accumulation compare favorably with those realized from conventional deepwater gas reservoirs in the vicinity. In addition, Leg II LWD data delineated the occurrence of a stratal-bound occurrence of gas hydrate-filled fractures at low bulk volume saturations within a thick, shallow, and predominantly fine-grained unit. This unit is estimated to contain roughly 17.0×109m3 (5.87×1011ft3) of gas. The areal gas hydrate resource density within the Terrebonne basin is calculated at 1.183×109m3 per km2 where delineated sand reservoirs are present and 0.32×109m3 per km2 where sands are thought to be absent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.