Abstract

In this paper, we present two different approaches to represent/predict the gas hydrate phase equilibria for the carbon dioxide, methane, or ethane + pure water system in the presence of various types of porous media with different pore sizes. The studied porous media include silica gel, mesoporous silica, and porous silica glass. First, a correlation is presented, which estimates the hydrate suppression temperature due to the pore effects from the ice point depression (IPD). In the second place, several mathematical models are proposed using the least squares support vector machine (LSSVM) algorithm for the determination of the dissociation pressures of the corresponding systems. The results indicate that although the applied correlation based on the (IPD) leads to obtaining reliable results for the gas hydrate systems in the presence of porous silica glass media, the developed LSSVM models seem to be more general due to their predictive capability over all of the investigated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.