Abstract

The very low pressure obtained thanks to adsorption phenomenon at low temperature can be used to build cryogenic heat switches, which offer the possibility to make or break thermal contact between two parts of a cryogenic system. The ON (conducting) and OFF (insulating) states of the switch are obtained by varying the gas pressure between two copper blocks separated by a gap of 100 μm. This pressure is controlled by acting upon the temperature of a small sorption pump (activated charcoal) connected to the gap space. For a “high” sorption pump temperature, the gas previously adsorbed in the sorption pump is released to the gap between the two blocks, allowing a good thermal conduction through the gas (ON state). On the opposite, cooling the sorption pump allows a very good vacuum between the copper blocks, which efficiently break the thermal contact (OFF state). Experimental thermal characteristics (Conductance in the ON and OFF state, ON–OFF switching temperature) of such a “Gas Gap Heat Switch” are described using hydrogen or neon as exchange gas and are compared with theoretical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call