Abstract

An alternative algorithm has been developed for computing the behaviour of flows within arbitrary ducts and channels. This technique requires a small number of downstream marches in the primary flow direction, employing, on each march, numerically efficient procedures originally developed for a single sweep non‐elliptic flow solver. The multiple sweeps allow the capture of effects such as upstream pressure influences and streamwise recirculation. The energy equation is also solved to allow for varying heat transfer between the fluid and the boundary walls. The numerical work is further complicated by considering flows within turning sections of ducts which demonstrate large transverse velocities and consequent distortion of the primary flow. The computations are validated by comparison with a number of fluid/heat transfer experiments. The majority of these are taken from studies of turning flows within circular arc ducts which display the various pressure and transverse flow phenomena for which this new algorithm was initially developed to represent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.