Abstract
Nonuniform local flow inside randomly porous media of gas–solid packed beds of low aspect ratios ranging from 1.5 to 5 was investigated by three-dimensional modeling and near-infrared tomography. These beds are known to demonstrate heterogeneous mixing and uneven distributions of mass and heat. The effects of the confining wall on flow dynamics were found nonlinear, particularly for aspect ratios lower than 3. High velocities were mainly observed in regions near the wall of aspect ratio value of 1.5 and those of values higher than 3, owing to high local porosities in these zones. Mass dispersion characterized both by experimental near-infrared imaging and by particle tracking showed discrepancies with literature models, particularly for aspect ratios lower than 3. Uncertainties were more significant with the radial dispersion due to bed size limits. Beyond this value, the wall affected more the axial dispersion, confirming the nonlinear impact of the wall on global hydrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.