Abstract
Gliding arc discharge systems have been used in various applications. However, the power of conventional gliding arc plasmas is relatively high and the system requires an additional discharge for its ignition and a resistor for current protection, which causes further total energy consumption. We have proposed ultraviolet (UV)-assisted gliding arc discharge systems supported by time-resolved understanding for electrical characteristics and dynamic behavior of serpentine plasmas. In this paper, we report on gas flow dependence on dynamic behavior of serpentine plasmas in a gliding arc discharge system with the irradiation of a low-pressure mercury lamp. Time-resolved evaluation was carried out using the results of synchronized measurement for serpentine plasmas with a high-speed camera, a high-voltage probe, and a current sensor. Waveforms and mean values of the applied voltage, current, power, impedance, and energy for serpentine plasmas in the UV-assisted gliding arc discharge system were studied. The power and impedance per unit plasma length were also evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Plasma Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.