Abstract
Microchannel is one of the essential components that construct various micro systems. However, it has been reported that the flow and heat transfer behavior in microchannel deviates from predictions based on the conventional assumptions generally accepted in macro scale. In this study, frictional characteristics of nitrogen (N2), argon (Ar) and helium (He) flowing through microtubes whose diameter ranges from 5 to 100 μm have been investigated experimentally. Inlet / outlet pressure difference and volumetric flow rate were measured. In the range of Reynolds number (Re=0.03∼29.7) tested in this study, the measured friction constant was observed to take the values around 50, which is about 20% less than 64, the value regarded to be correct for macro scale tube predicted by the incompressible flow assumption. Transition from incompressible to compressible flow regimes was observed experimentally. The onset of compressibility effect was dependent on the inlet / outlet pressure difference (or the pressure ratio) as well as on the Mach number. The frictional resistance of nitrogen flow showed a Knudsen number dependence, which is in rough agreement with the first-order slip model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.