Abstract

Gas flaring is concerned with the combustion of lighter ends of hydrocarbon mostly produced in association with crude oil. Flare networks are designed to handle the gas volume required to be flared. Most times, this flare networks are in close proximity but still have independent flare stacks, increasing risk to environment and cost on infrastructures. There is a need to integrate the flare networks in facilities within same area and through the application of Pinch Analysis concept, the resultant flare network can be optimized to give a system having optimal tail and header pipe sizes that will reduce cost and impact on environment. In the light of the foregoing, the concept of pinch analysis was used in debottlenecking integrated gas flare networks from a flow station and a refinery in close proximity. Both flare networks were integrated and the resultant gas flare network was optimized to obtain the optimum pipe header and tail pipe sizes with the capacity to withstand the inventory from both facilities and satisfy the set constraints such as Mach number, noise, RhoV2 and backpressure. Mach number was set at 0.7 for tail pipes and 0.5 for header pipes, noise limit was not to exceed 80 dB upstream and 115 dB downstream the sources, RhoV2 was limited to 6000 kg/m/s2 and the back pressure requirement was source dependent respectively. The fire case scenario was considered, as it is the worst-case scenario in the studies. When pinch analysis was applied in debottlenecking the combined gas flare network, it gave smaller tail and header pipe sizes which is more economical. A 20% decrease in pipe sizes was recorded at the end of the study.

Highlights

  • The launch of Nigeria Gas Flare Commercialization Programme (NGFCP) by the Federal Government of Nigeria lends credence to the fact that Nigeria too is determined to cut gas flaring activities, though, there are existing flare systems exempted from the program for the mean time due to peculiarities of such facilities [3]

  • In 2015 there were 39 companies directly involved in oil and gas production in Nigeria, producing natural gas from 189 fields with daily Associated Gas (AG) production of 4.74 bscf/d and Non-associated Gas (NAG) production of nearly 3.46 bscf/d [4]

  • Pinch Analysis is applied in debottlenecking a combined gas flare networks from Egam Flow station and Onage refinery to get optimum tailpipes, header pipes, and flare stack pipe sizes required for efficient handling of fluid volume and necessary upsets

Read more

Summary

Introduction

The need to research the viability of applying the concept of pinch analysis in debottlenecking integrated gas flare networks. According to [5], Pinch technology is concerned with the optimization of energy utilized in the Process industries. Risk management in the process industries had been analyzed using the pinch methodology as established [15] This technique enables Pinch Analysis philosophy to be applied to the problem of allocating resources to mitigate risks in industrial processes. Pinch Analysis is applied in debottlenecking a combined gas flare networks from Egam Flow station and Onage refinery to get optimum tailpipes, header pipes, and flare stack pipe sizes required for efficient handling of fluid volume and necessary upsets. An integrated flare network had been debottlenecked using the concept of Pinch Analysis to safe cost and enhance safer environment

Materials and Methods
Design Assumptions
Material Balance
Energy Balance Recalling theenergy continuity equation
Momentum Balance
Design Input Data
Solution Techniques
Results and Discussion
Constraints
Combined Flare Network Results
Comparison of the Debottlenecked and None Debottlenecked Cases
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call