Abstract

The ability of young stellar clusters to expel or retain the gas left over after a first episode of star formation is a central issue in all models aiming to explain multiple stellar populations and the peculiar light element abundance patterns in globular clusters. Recent attempts to detect the gas left over from star formation in present day clusters with masses similar to those of globular clusters did not reveal a significant amount of gas in the majority of them, which strongly restricts the scenarios of multiple stellar population formation. Here the conditions required to retain the gas left over from star formation within the natal star forming cloud are revised. It is shown that the usually accepted concept regarding the thermalization of the star cluster kinetic energy due to nearby stellar winds and SNe ejecta collisions must be taken with care in the case of very compact and dense star forming clouds where three star formation regimes are possible if one considers different star formation efficiencies and mass concentrations. The three possible regimes are well separated in the half-mass radius and in the natal gas central density vs pre-stellar cloud mass parameter space. The two gas free clusters in the Antennae galaxies and the gas rich cluster with a similar mass and age in the galaxy NGC 5253 appear in different zones in these diagrams. The critical lines obtained for clusters with a solar and a primordial gas metallicity are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.