Abstract
Forest plantations established with seedlings have heterogeneity and are difficult to manage, so an alternative is the use of clones with high productivity. In addition, clonal plants differ in the structure of the root system that can influence the water and nutrient uptake efficiency and therefore productivity. We evaluated leaf gas exchange, root hydraulic conductivity, and water use efficiency of Toona ciliata clonal cuttings and the seedlings growth. The study was performed in a completely randomized design with four treatments: a) TC3 clone; b) TC9 clone; c) TC15 clone and d) seedlings with five replicates and ten plants per plot. On the 120th day, the net photosynthetic rate, transpiration and stomatal conductance were evaluated between 12:00 and 13:00 hours and the values calculated as efficient, instantaneous (A/E) and intrinsic (A/gs) water use were calculated. Hydraulic root conductivity (kroot)was obtained by applying increasing pressures (0.1, 0.2, 0.3, and 0.4 MPa) using Scholander chamber. The height, stem diameter, leaf area, dry mass of shoot and root, length, diameter, surface area and root volume were also determined. The data were submitted to Pearson’s correlation and analysis of variance, comparing by Tukey’s test (5%). The genetic materials studied presented an equal capacity of water absorption and transport by the roots, even though they exhibited a visual anatomical differences of the root system. Although, the clones exhibited low transpiration and net photosynthetic rates, they were generally more efficient in water use, and the TC3 and TC9 clones were more efficient to convert the assimilated carbon to biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.