Abstract

An important aspect of environmental control in a life-support system is the monitoring and regulation of atmospheric gases (Sager et al. 1988) at concentrations required for the maintenance of all life forms. It will be necessary to know the rates of CO2 use, oxygen evolution, and water flux through evapotranspiration by a crop stand under various environmental conditions, so that appropriate designs and control systems for maintaining mass balances of those gases can be achieved for a full range of environmental regimes. Mass budgets of gases will also enable evaluation of crop health by monitoring directly the rates of gas exchange and indirectly the rate of accumulation of dry matter, based on rates of carbon dioxide use. This article focuses on the unique capabilities of the NASA biomass production chamber for monitoring and evaluating gas exchange rates, with special emphasis on results with wheat and soybean, two candidate species identified by NASA for CELSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call