Abstract
We examined the effects of oscillatory frequency (f), tidal volume (VT), and mean airway pressure (Paw) on respiratory gas exchange during high-frequency oscillatory ventilation of healthy anesthetized rabbits. Frequencies from 3 to 30 Hz, VT from 0.4 to 2.0 ml/kg body wt (approximately 20-100% of dead space volume), and Paw from 5 to 20 cmH2O were studied. As expected, both arterial partial pressure of O2 and CO2 (PaO2 and PaCO2, respectively) were found to be related to f and VT. Changing Paw had little effect on blood gas tensions. Similar values of PaO2 and PaCO2 were obtained at many different combinations of f and VT. These relationships collapsed onto a single curve when blood gas tensions were plotted as functions of f multiplied by the square of VT (f. VT2). Simultaneous tracheal and alveolar gas samples showed that the gradient for PO2 and PCO2 increased as f. VT2 decreased, indicating alveolar hypoventilation. However, venous admixture also increased as f. VT2 decreased, suggesting that ventilation-perfusion inequality must also have increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.