Abstract

The rates of net photosynthesis and transpiration of one‐year‐old shoots were measured in situ in five different positions within the crown of a young Scots pine (Pinus sylvestris L.). Measurements were carried out on south‐ and north‐facing shoots on the third and sixth whorls, respectively, and on an east‐facing shoot on the ninth whorl. In another investigation the rates of gas exchange of one‐year‐old shoots on the third whorl of eight different trees were studied. The measurements were made during June and July, 1977, under non‐limiting conditions of soil water. The daily rates of net photosynthesis in whorls three and six followed the light conditions closely, with higher rates for the south side of each whorl and higher for whorl three than six. On whorl nine the shoot had a higher light compensation point and a low rate of photosynthesis at light saturation compared to the other shoot positions. The quantum yield for the shoot on the lowest whorl, as estimated from the linear part of the light response curve, was 50% lower than for shoots on whorl three and six.The variation in transpiration rates was pronounced within the crown as an effect of differences in the absolute value and diurnal course of stomatal conductance. The variation in net photosynthesis was small between different trees while the variation in transpiration was much higher. Thus the variation in water use efficiency was great. It is concluded that it is possible to extrapolate measurements of net photosynthesis from individual trees up to a stand level without introducing large errors in the estimate. More caution must be paid before extrapolating tree transpiration up to stand transpiration. However, before an extrapolation of gas exchange is made from tree to stand level the variation in net photosynthesis and transpiration rate within the crown must be known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.