Abstract

Abstract Three months old plants of the Chinese tung-oil tree Aleurites montana (Euphorbiaceae) were cultivated for 4 months in air containing 700 ppm CO2. These plants, which grow substantially better in the CO2-enriched atmosphere, were analyzed by mass spectrometry for photosynthesis and photorespiration together with control plants grown all the time in normal (350 ppm CO2) air. Thereafter part of the plants was subjected for two weeks to 0.3 ppm SO2 in the atmosphere and again analyzed for photosynthesis and photorespiration. Aleurites montana exhibits a strongly CO2-dependent photosynthesis which partially explains the observed stimulatory effect of 700 ppm CO2 on growth of the plant. In control plants grown in normal air, photorespiration measured simultaneously with photosynthesis via the uptake of l80 2 in the light, is much lower than in C3-plants like tobacco (H e et al., 1995, Z. Naturforsch. 50c, 781-788 ). In Aleurites grown in 700 ppm CO2, however, photorespiration is completely absent in contrast to tobacco when grown under 700 ppm CO2. In tobacco, photorespiration is not inhibited to the extent of the in vitro experiments in which plants grown at 350 ppm CO2 are measured under the increased CO2 content of 700 ppm. Gas exchange measurements carried out by mass spectrometry show that the ratio of O2 evolved to CO2 fixed is about 0.5. Apparently, part of the CO2 fixed is channelled into a metabolic path without concomitant O2-evolution. Although the plant has no succulent appearance (its leaves somehow resemble maple leaves) apparently a Crassulacean type metabolism is performed. When Aleurites plants grown all the time in normal air with 350 ppm, are exposed for two weeks to 0.3 ppm SO2 the treatment completely inhibits this CO2-fixing portion which is tentatively attributed to a Crassulacean type of metabolism. This is demonstrated by a normal C3-type ratio O2 evolved /CO2 fixed of 1. When Aleurites plants, grown for 4 months in a CO2-enriched atmosphere of 700 ppm CO2, are subjected for two weeks to 0.3 ppm SO2, the features of control plants show up again. When these plants are tested under 350 ppm CO2 the Crassulacean type CO2-fixation apparently is not inhibited by SO2. Photorespiration, although low, is present in the same activity as in the controls. Seemingly, an increased level of CO2 in air tends to alleviate the impact of the SO2 at least in the Chinese tung-oil tree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.