Abstract

Recent droughts and depleted water tables across many regions have elevated the necessity to irrigate field-grown (FG) nursery trees. At the same time, ordinances restricting nursery irrigation volume (often without regard to plant water requirements) have been implemented. This research investigated gas exchange and growth of two FG maple tree species (Acer × freemanii `Autumn Blaze' and A. truncatum) subjected to three reference evapotranspiration (ETo) irrigation regimes (100%, 60%, and 30% of ETo) in a semi-arid climate. During Spring 2002, nine containerized (11.3 L) trees of each species were field planted in a randomized block design. Each year trees were irrigated through a drip irrigation system. During the first growing season, all trees were irrigated at 100% ETo. Irrigation treatments began Spring of 2003. Gas exchange data (pre-dawn leaf water potential and midday stomatal conductance) were collected during the 2003 and 2004 growing seasons and growth data (shoot elongation, caliper increase, and leaf area) were collected at the end of each growing season. For each species, yearly data indicates irrigation regime influenced gas exchange and growth of these FG trees. However, it is interesting to note gas exchange and growth of these FG maple trees were not necessarily associated with trees receiving the high irrigation treatment. In addition, it appears the influence of irrigation volume on the growth of these FG trees is plant structure and species specific. Our data suggests irrigation of FG trees based upon local ETo measurements and soil surface root area may be a means to conserve irrigation water and produce FG trees with adequate growth. However, continued research on the influence of reduced irrigation on FG tree species is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call