Abstract

The characteristics of gas exchange and carbon isotope discrimination were determined for a number of lichen species, representing contrasting associations between fungal (mycobiont) and photosynthetic (photobiont) organism. These parameters were evaluated with regard to the occurrence of any CO2-concentrating mechanism (CCM) expressed specifically by the green algal (phycobiont) or cyanobacterial (cyanobiont) partner. Carbon isotope discrimination (Δ) fell into three categories. The highest Δ, found in lichens comprising a phycobiont plus cyanobacteria limited to pockets in the thallus (known as cephalodia), ranged from 24 to 28‰, equivalent to a carbon isotope ratio (δ13C) of around -32 to-36‰ vs. Pee Dee Belemnite (PDB) standard. Further evidence was consistent with CO2 supply to the carboxylating system entirely mediated by diffusion rather than a CCM, in that thallus CO2 compensation point and online instantaneous Δ were also high, in the range normally associated with C3 higher plants. For lichens consisting of phycobiont or cyanobiont alone, organic material Δ formed two distinct ranges around 15‰ (equivalent to a δ13C of -23%.). Thallus compensation point and instantaneous Δ were lower in the cyanobiont group, which also showed higher maximum rates of net photosynthesis, whether expressed on the basis of thallus dry weight, chlorophyll content or area. These data provide additional evidence for the activity of a CCM in cyanobiont lichens, which only show photosynthetic activity when reactivated with liquid water. Rates of net CO2 uptake were lower in both phycobiont associations, but were relatively constant across a wide working range of thallus water contents, usually in parallel with on-line Δ. The phycobiont response was consistent whether photosynthesis had been reactivated with liquid water or water vapour. The effect of diffusion limitation could generally be seen with a 3–4‰ decrease in instantaneous Δ at the highest water contents. The expression of a CCM in phycobiont algae, although reduced compared with that in cyanobacteria, has already been related to the occurrence of pyrenoids in chloroplasts. In view of the inherent requirement of cyanobacteria for some form of CCM, and the smaller pools of dissolved inorganic carbon (DIC = CO2 + HCO inf3 su− + CO inf3 su2− ) associated with phycobiont lichens, it appears that Δ characteristics provide a good measure of the magnitude of any CCM, albeit tempered by diffusion limitation at the highest thallus water contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.