Abstract

Sodium cooled fast reactors have been developed in France for nearly 50 years. The so-called Astrid technology demonstrator is currently designed in the frame of Generation IV deployment. Gas entrainment in the primary sodium circuit is a key issue as it can lead to safety problems in case of accumulation and transport of large quantity of gas through the core. The paper first introduces the main problems caused by the presence of gas in the primary sodium circuit, the various sources of gas and the main issues on gas transport. As sodium–argon free surface is potentially an important source of gas entrainment in the primary circuit, we present the main results obtained in past experimental studies on vortex type gas entrainment at free surface. Water tests were performed in a simple flow condition to study the physical process of vortex occurrence and gas entrainment. Other water tests were performed in representative hot pool models at different scales to analyze similarity criteria. Moreover, design improvements and local devices were tested to avoid gas entrainment at the free surface. Nowadays, numerical tools are progressively used to estimate the risk of gas entrainment at the free surface. We present the methodology in progress to define local criteria on vortex occurrence and gas entrainment, and to apply these criteria to global calculations of the whole pool. A Front-Tracking method coupled to a Large Eddy Simulation approach is implemented in TRIO_U code to compute free surface instabilities and vortex occurrence. Experimental data from the literature are used to validate the numerical approach and a new test facility called BANGA is in progress at CEA to complete the validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call