Abstract

We present a new method for rapid measurement of local gas dispersion in volume-cycled tube flow. After a small bolus of tracer gas (argon) was injected into the oscillating flow, the time-averaged effective diffusion coefficient (mean value of Deff/D) for axial transport of a tracer gas is evaluated from local argon concentration measurements taken by a mass spectrometer. Two methods are presented for the evaluation of mean value of Deff/D from the concentration measurements: one uses all the sampled data, and the other uses only the local peaks of the concentration. Experiments were conducted in two tubes (radius = 0.85 or 1.0 cm) over a range of frequencies (0.42 less than or equal to f less than or equal to 8.5 Hz) and tidal volumes (7 less than or equal to VT less than or equal to 48 ml). The experimental results show very good agreement with the theoretical predictions of Elad et al. (J. Appl. Physiol. 72: 312-320, 1992). In the absence of oscillations (static fluid), the resulting mean value of Deff/D converges to that of molecular diffusion. We also show that concentration data may be acquired at any radial or axial position, not necessarily at the tracer gas injection point, and the resulting mean value of Deff/D is independent of the spatial position of the sampling catheter. This method is of similar accuracy and is substantially faster than previous methods for measuring gas dispersion in oscillatory flows. The rapidity of these measurements may permit this method to be used for the in vivo assessment of gas transport properties within the pulmonary system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call