Abstract

Plasticization of glassy polymers by small molecules was approached by the “concentration−temperature superposition” principle. The major effect of the plasticization by small molecules is on the reduction of the glass transition temperature. The present study suggests that the dependence of diffusion coefficients of small molecules on the penetrant concentration can be affected by the reduction of the glass transition of the penetrant/polymer system caused by a plasticization effect of the penetrant. With a WLF type shift factor, the concentration-dependent diffusion coefficient can be predicted. It is found that the calculated diffusion coefficient correlates very well to the experimental data. This study also proposes a prediction of time-lag values from the solubility and permeability measurements. Moreover, the diffusion coefficients for gases in glassy polymers can also be predicted using the time-lag values alone. The proposed diffusion model represents satisfactorily experimental data reported in ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call