Abstract

Herein, a three-armed amphiphilic metallacycle-cored star supramolecular polymer (Por-MOM-PDMAEMA) has been designed and synthesized via highly efficient post-assembly polymerization. This star polymer is further self-assembled into nanoparticles of different sizes depending upon the experimental conditions. The gas-controlled morphology transformation and tunable antibacterial activities of Por-MOM-PDMAEMAis systematically investigated and compared with metallacycle (MOM). The superior antibacterial activity of Por-MOM-PDMAEMA against multidrug-resistant P. aeruginosa implies that the presence of photodynamic photosensitizer (Por) and cationic polymer chain will significantly enhance antibactericidal activity, which is mainly attributed to the synergistic effect of photosensitizer and polymer chain linked in one metallacycle core. By leveraging the unique properties of metallacycle and their dynamic response to gaseous stimuli, the antibacterial properties of the Por-MOM-PDMAEMA can be finely tuned in response to gas triggers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.