Abstract

Objective(s):The present study determines the chemical constituents of Persea americana using gas chromatography-mass spectrometry (GC-MS) and its different activities. Materials and Methods: Air-dried powdered leaves of Persea americana were extracted by 95% methanol and fractionated consecutively with petroleum ether, chloroform, and ethyl acetate. The saponifiable matter, EtOAc and aqueous fractions were subjected to GC-MS. The analgesic, anti-inflammatory, antipyretic, and antihyperglycemic properties of extracts, different fractions, and crude polysaccharide were determined by hot plate, carrageenan-induced paw edema, yeast-induced pyrexia, and alloxan-induced hyperglycemia methods, respectively. Results:Fourteen fatty acid methyl esters were identified in GC-MS-based profiling of the saponifiable matter. Alongside, 13 compounds were determined from EtOAc fraction and 6 compounds from the aqueous fraction of P. americana leaves. The ethyl acetate fraction and total stem extract displayed high anti-inflammatory potential with percentage of paw edema reduction by 48.99 and 47.54 %, respectively, compared with that of indomethacin (42.90 %). The ethyl acetate fraction and total stem extract revealed the highest analgesic activity with 137.95 and 137.12 % percent of protection against external stimulus, respectively. Investigation of antipyretic efficiency showed the total stem extract and crude polysaccharides attained normal temperature after 3 hr, which was very close to that of acetylsalicylic acid. The total leaf and stem extracts displayed significant antihyperglycemic activity with significant reduction in the level of blood glucose by 76.67 and 59.05 %, respectively.Conclusion: P. americana had analgesic, anti-inflammatory, antipyretic, and antihyperglycemic properties, which refer to its bioactive metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.