Abstract

1,3-Dinitrobenzene (DNB) and 1,3,5-trinitrobenzene (TNB) are used primarily in explosive compositions and munitions and have been detected as environmental contaminants of surface waters as well as ground waters near production waste disposal sites. Hemoglobin (Hb) adducts have recently been proposed as biological markers of exposure assessment for various environmental compounds, including nitroaromatics. In the present study, we have investigated the formation of DNB and TNB hemoglobin adducts in vivo and in vitro in the blood of shrew (Cryptotis parva). DNB and TNB hemoglobin adducts were detected by gas chromatography/mass spectrometry (GC/MS) after either basic (0.1 N NaOH) or acid (2 N HCl) hydrolysis followed by organic solvent extraction and derivatization of the corresponding amines. The levels of DNB-Hb adducts detected after basic hydrolysis (238.7 & pm; 50.2 pg/mg Hb) are higher than the corresponding levels detected after acid hydrolysis (52.5 & pm; 16.2 pg/mg Hb). For the TNB-Hb the levels after acid hydrolysis (132.2 & pm; 37.8 pg/mg Hb) are higher than the levels detected after basic hydrolysis (44.7 & pm; 15.3 pg-mg Hb). These results demonstrate the effectiveness of the hemoglobin adduct model for monitoring exposure to nitroaromatics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call