Abstract

Effects of pressure reduction, decompression rate, and repeated exposure on venous gas bubble formation were determined in five groups (GI, GII, GIII, GIV, and GV) of conscious and freely moving rats in a heliox atmosphere. Bubbles were recorded with a Doppler ultrasound probe implanted around the inferior caval vein. Rats were held for 16 h at 0.4 MPa (GI), 0.5 MPa (GII and GIII), 1.7 MPa (GIVa), or 1.9 MPa (GIV and GV), followed by decompression to 0.1 MPa in GI to GIII and to 1.1 MPa in GIV and GV. A greater decompression step, but at the same rate (GII vs. GI and GIVb vs. GIVa), resulted in significantly more bubbles (P < 0.01). A twofold decompression step resulted in equal amount of bubbles when decompressing to 1.1 MPa compared with 0.1 MPa. The faster decompression in GII and GVa (10.0 kPa/s) resulted in significantly more bubbles (P < 0.01) compared with GIII and GVb (2.2 kPa/s). No significant difference was observed in cumulative bubble score when comparing first and second exposure. With the present animal model, different decompression regimes may be evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call