Abstract

In the case of ultrasound application in biological tissues, gas bubbles might form and collapse within cells, in the intercellular spaces and on tissue surfaces. In this work the effect of confined space on the behavior of the gas bubble in the presence of ultrasonic field is studied. A numerical model for bubble pulsation in a planar liquid layer, bounded by two rigid walls, is developed. Surface tension at the interface between the host liquid and the gas in the bubble is considered as well. A mathematical statement and solution technique based on the boundary integral method are presented. In some cases, the bubble divides into two symmetrical parts and high-velocity jets are generated, aimed at the walls. The final velocity of the jets strongly depends on the surface tension of the host liquid. Two new parameters that predict the occurrence of jet formation are developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.