Abstract

The morphology of the gas bubbles in the working gap determines the conditions for the electrical breakdown in spark erosion. Significant modification of the gas bubble structures can be proved by high speed recording if the pulses are changed only in a small parameter field. The investigations carried out are particularly important for the production of precise holes with the spark erosion process. In ED hole sinking, the work gap is smaller than 20 /spl mu/m so that the size and number of gas bubbles are dominant criteria for decontamination of the discharge gap. The gap cleaning effect can be optimized by the specific choice of the pulse parameters, which leads to an essential reduction of the processing time. Comparative investigations with a high speed framing camera (HSFC) indicate that also for single discharges, the gas bubbles are considerably longer than the pulse periods usually used in spark erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call