Abstract

Powerful catalysts may be produced from gas atomized Al–Ni powders. The efficiency of these catalysts depends on the amount of the different phases formed during solidification. The present paper reports on the analysis of these transformations by combining experiments and simulations. Firstly, the volume fractions of phases in gas atomized Al–Ni powders are determined for several compositions and size ranges using neutron diffraction analysis. Additionally, solidification paths are simulated with a model previously validated for concurrent dendritic, peritectic and eutectic phase transformations in binary alloys. The measurements demonstrate a strong dependence of phase fractions on particle size, as well as an inversion of trends with composition. The predictions of the model show good agreement with the measurements. Details of the simulations clarify the combined roles of the kinetics of cooling, the solute diffusion in phases as well as the growth kinetics of microstructures. These advanced interpretations should open the way to the production of further optimized catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.