Abstract

The transport of pure gases through a microporous membrane is described. The alumina-based membrane (pores 2.5-4 nm) is suitable for Knudsen diffusion separation. To improve the separation factor, interaction with and mobility on the pore wall of one of the gases of a mixture is necessary. To introduce surface diffusion of oxygen and hydrogen, a γ-alumina membrane was impregnated with silver. If temperature and atmosphere are controlled carefully, finely dispersed silver up to 17% by weight can be introduced. At higher loads and under oxidizing conditions, particle growth occurs. In adsorption experiments, little oxygen adsorption on the silver-modified γ-alumina could be detected. This is due to a decrease in accessible surface area of the silver because of particle growth of silver under oxygen. The mobility of hydrogen on the surface was tested by counterdiffusion experiments, of which the theory is given. Hydrogen shows a considerable mobility on the surface at 293 K. At low pressures the flux ratio of hydrogen to nitrogen improved from 3.8 to 8.8. Magnesia was introduced into the γ-alumina membrane to enhance the adsorption and mobility of CO 2. It is known that 30% of the CO 2 transport on non-modified γ-alumina is surface diffusion. The highest achievable magnesia load was 2.2% by weight. Introduction of magnesia into the γ-alumina surface gives more strong base sites and fewer weak base sites. This results in stronger bonding of CO 2 on the surface, but the amount adsorbed is comparable with the amount of CO 2 adsorbed on non-modified γ-alumina. The contribution of surface diffusion to the total transport decreases with the introduction of magnesia, as is shown by counterdiffusion. The more strongly bonded CO 2 is less mobile, resulting in a smaller surface flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.