Abstract

The high-temperature cooking of protein-rich foods represents an important but poorly constrained source of nitrogen-containing gases and particles to indoor and outdoor atmospheres. For example, panfrying meat may form and emit these nitrogen-containing compounds through complex chemistry occurring between heated proteins and cooking oils. Here, we simulate this cooking process by heating amino acids together with triglycerides. We explore their interactions across different temperatures, triglyceride types, and amino acid precursors to form amide-containing products. Ammonia, arising from the thermal degradation of amino acids, may react with a triglyceride's ester linkages, forming amides and promoting de-esterification reactions that break the triglyceride into volatilizable products. Additionally, triglycerides may thermally oxidize and fragment as they are heated, and the resulting oxygenated breakdown products may react with ammonia to form amides. We observed evidence for amide formation through both of these pathways, including gas-phase emissions of C2-11H5-23NO species, whose emission factors ranged from 33 to 813 μg total gas-phase amides per gram of amino acid precursor. Comparable quantities of particle-phase oleamide (C18H35NO) were emitted, ranging from 45 to 218 μg/g. The observed amide products had variable predicted toxicities, highlighting the importance of understanding their emissions from cooking and their ultimate inhalation exposure risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call