Abstract

Ni50Cr thermally sprayed coatings are widely used for high temperature oxidation and corrosion in thermal power plants. In this study, a commercially available gas atomised Ni50Cr powder was sprayed onto a power plant alloy (ASME P92) using both gas and liquid fuelled high velocity oxy-fuel (HVOF) thermal spray. Microstructures of the two coatings were examined using SEM-EDX, XRD, oxygen content analysis and mercury intrusion porosimeter. The gas fuelled coating had higher levels of oxygen content and porosity. Shorter term air oxidation tests (4h) of the free-standing deposits in a thermogravimetric analyser (TGA) and longer term air oxidation tests (100h) of the coated substrates were performed at 700°C. The kinetics of oxidation and the oxidation products were characterized in detail in SEM/EDX and XRD. In both samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of the coatings along with a small amount of NiO and NiCr2O4. Rietveld analysis was performed on the XRD data to quantify the phase composition of the oxides on both Ni50Cr coatings and their evolution with exposure time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.