Abstract

Simulations of the thermal effects during adsorption cycles are a valuable tool for the design of efficient adsorption-based systems such as gas storage, gas separation and adsorption-based heat pumps. In this paper, we present simulations of the thermal phenomena associated with hydrogen, nitrogen and methane adsorption on activated carbon for supercritical temperatures and high pressures. The analytical expressions of adsorption and of the internal energy of the adsorbed phase are calculated from a Dubinin-Astakhov adsorption model using solution thermodynamics. A constant adsorption volume is assumed. The isosteric heat is also calculated and discussed. Finally, the mass and energy rate balance equations for an adsorbate/adsorbent pair are presented and are shown to be in agreement with desorption experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.