Abstract

Crystalline silicic acids are prepared from alkali layer silicates by exchanging protons for the alkali ions. The acid H2Si20O41 · xH2O (parent material K2Si20O41 · xH2O) exhibits some outstanding gas adsorption properties which are related to the layer structure and the interlamellar microporosity. The external surface, about 20 m2 g−1, is estimated from nitrogen adsorption data after blocking the micropores. Slit-shaped ultramicropores (with diameters similiar to that of the nitrogen molecule) between the layers are widened to supermicropores near the crystal edges. During an adsorption run the nitrogen molecules penetrate more deeply into the ultramicropores. Nitrogen molecules strongly adsorbed in the ultramicropores are not desorbed at 77 K. Additional amounts of nitrogen are adsorbed by widening of the slit-shaped micropores at the crystal edges when pressure increases. This process proceeds slowly and is reversible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call